
Programming for problem solving using C Notes

Unit - I

Computer History, Hardware, Software, Programming Languages and Algorithms:

Components and functions of a Computer System, Concept of Hardware and Software

Programming Languages: Low- level and High-level Languages, Program Design

Tools: Algorithm, Flowchart, Pseudo code. Introduction to C Programming:

Introduction, Structure of a C Program, Comments, Keywords, Identifiers, Data Types,

Variables, Constants, Input/Output Statements, Operators, Type Conversion

INTRODUCTION TO PROGRAMMING

1.1 Introduction to Computer Software

When we talk about a computer, we actually mean two things:

• First is the computer hardware that does all the physical work computers.

• Second is the computer software that commands the hardware what to do and how to

do it.

Figure 1.1 Parts of a computer system

Computer Hardware

• Computer hardware is a digital machine (Physical components of a computer), it can

only understand two basic states: on and off.

• The computer hardware cannot think and make decisions on its own. So, it cannot be

used to analyse a given set of data and find a solution on its own.

• The hardware needs a software (a set of programs) to instruct what has to be done.

• Example: Mother Board, Processor, RAM, Monitor, Keyboard, Mouse, Hard Disk,

DVD Drive, SMPS, etc.

Computer Software

• Computer software is the set of instructions and associated data that direct the computer

to do a task. Software is written by computer programmers using a programming

language.

• The programmer writes a set of instructions (program) using a specific programming

language. Such instructions are known as the source code.

• A program is a set of instructions that are arranged in a sequence to guide a computer

to find a solution for a given problem. The process of writing a program is called

programming.

1.2 Classification of Computer Software

Computer software can be broadly classified into two groups:

1. System Software

2. Application Software

Figure 1.2 Relationship between hardware, system software, and application software

System Software

System software represents programs that allow the hardware to run properly. System

software is software designed to operate the computer hardware and to provide and maintain a

platform for running application software. System software is transparent to the user and acts

as an interface between the hardware of the computer and the application software that users

need to run on the computer.

Computer BIOS and Device Drivers

The computer BIOS and device drivers provide basic functionality to operate and

control the hardware connected to or built into the computer.

BIOS or Basic Input/Output System is a de facto standard defining a firmware interface.

BIOS is built into the computer and is the first code run by the computer when it is switched

on. The key role of BIOS is to load and start the operating system.

BIOS is stored on a ROM chip built into the system and has a user interface like that of

a menu (Below Figure) that can be accessed by pressing a certain key on the keyboard when

the computer starts.

Figure 1.3 BIOS menu

To summarize, BIOS performs the following functions:

• Initializes the system hardware

• Initializes system registers

• Initializes power management system

• Tests RAM

• Tests all the serial and parallel ports

• Initializes CD/DVD drive and hard disk controllers

Operating System

An Operating System (OS) is an interface between a computer user and computer

hardware. An operating system is a software which performs all the basic tasks like file

management, memory management, process management, handling input and output, and

controlling peripheral devices such as disk drives and printers.

The primary goal of an operating system is to make the computer convenient and

efficient to use. An operating system offers generic services to support user applications. Some

popular Operating Systems include Linux Operating System, Windows Operating System,

VMS, OS/400, AIX, z/OS, etc.

Utility Software

 Utility software is used to analyse, configure, optimize, and maintain the computer

system. Utility programs may be requested by application programs during their execution for

multiple purposes. It is used to support the computer infrastructure - in contrast to application

software, which is aimed at directly performing tasks that benefit ordinary users.

Some of them are as follows: Disk checkers, Disk cleaners, File managers, System

profiler, Anti-virus utilities, Data compression, Network utilities, Command line interface

(CLI) and Graphical user interface (GUI).

Compiler, Interpreter, Linker, and Loader

Compiler reads source code written in a programming language (the source language

(high-level programming)) into machine language or assembly language (lower level

language) comprising just two digits, 1s and 0s (the target language). The resultant code in 1s

https://en.wikipedia.org/wiki/Infrastructure
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Application_software

and 0s is known as the object code. It provides error not of one line, but errors of the entire

program. It executes as a whole and it is fast.

Interpreter reads only one line of a source program at a time and convert it into an

object code. In case of error or same will be indicated instantly and it executes line by line and

it is slow.

Linker (link editor binder) It is a program that combines object modules to form an

executable program. Generally, in case of a large program, the programmers prefer to break a

code into smaller modules as this simplifies the programming task.

Loader It is a special type of program that copies programs from a storage device to

main memory, where they can be executed.

Application Software

Application software (app for short) is a program or group of programs designed for

end users. Application software is a type of computer software that employs the capabilities of

a computer directly to perform a user-defined task.

Typical examples of software applications are word processors, spreadsheets, media

players, education software, CAD, CAM, data communication software, and statistical and

operational research software.

1.3 Representation of Data – Bits and Bytes

Bits − A bit is a smallest possible unit of data that a computer can recognize or use. Computer

usually uses bits in groups.

Bytes − group of eight bits is called a byte. Half a byte is called a nibble.

The following table shows conversion of Bits and Bytes

• 1 Byte : 8 Bits

https://en.wikipedia.org/wiki/Computer_program

• 1024 Bytes : 1 Kilobyte

• 1024 Kilobytes : 1 Megabyte

• 1024 Megabytes : 1 Gigabyte

• 1024 Gigabytes : 1 Terabyte

• 1024 Terabytes : 1 Petabyte

• 1024 Petabytes : 1 Exabyte

• 1024 Exabytes : 1 Zettabyte

• 1024 Zettabytes : 1 Yottabyte

• 1024 Yottabytes : 1 Brontobyte

• 1024 Brontobyte : 1 Geopbytes

1.4 Programming Languages –High and Low Level Languages

High Level Language

High-level programming languages are easy for humans to read and understand, the

computer understands the machine language that consists of numbers only. Each type of CPU

has its own unique machine language.

High level languages is that they allow the programmer to write programs for all types

of computers and systems. Every instruction in high level language is converted to machine

language for the computer to comprehend.

Types of High-Level Language

Scripting languages or scripts are essentially programming languages. These languages

employ a high level construct which allows it to interpret and execute one command at a time.

Scripting languages are easier to learn and execute than compiled languages. Some examples

are AppleScript, JavaScript, Pearl etc.

Object-Oriented Languages These are high level languages that focus on the ‘objects’ rather

than the ‘actions’. To accomplish this, the focus will be on data than logic. Some examples

include Java, C+, C++, Python, Swift etc.

Procedural Programming Language This is a type of programming language that has well

structured steps and complex procedures within its programming to compose a complete

program. It has a systematic order functions and commands to complete a task or a program.

FORTRAN, ALGOL, BASIC, COBOL are some examples.

Low Level Languages

Low-level languages are the basic computer instructions or better known as machine

codes. A computer cannot understand any instruction given to it by the user in English or any

other high-level language. These low-level languages are very easily understandable by the

machine.

The main function of low-level languages is to interact with the hardware of the

computer. They help in operating, syncing and managing all the hardware and system

components of the computer. They handle all the instructions which form the architecture of

the hardware systems.

Types of Low-Level Language

Machine Language: This is one of the most basic low-level languages. The language was first

developed to interact with the first generation computers. It is written in binary code or machine

code, which means it basically comprises of only two digits – 1 and 0.

Assembly Language: This is the second-generation programming language. It is a

development on the machine language, where instead of using only numbers, we use English

words, names, and symbols. It is the most basic computer language necessary for any

processor.

1.5 Generation of Programming Languages

1. First generation languages (1GL)

2. Second generation languages (2GL)

3. Third generation languages (3GL)

4. Fourth generation languages (4GL)

5. Fifth generation languages (5GL)

First Generation (Machine Language): Machine language is the lowest level of

programming language that a computer understands. All the instructions and data values are

expressed using 1s and 0s, corresponding to the ‘on’ and ‘off’ electrical states in a computer.

Advantages of first generation language

• They are translation free and can be directly executed by the computers.

• The programs written in these languages are executed very speedily and efficiently by

the CPU of the computer system.

• The programs written in these languages utilize the memory in an efficient manner

because it is possible to keep track of each bit of data.

Second Generation (Assembly Language): Assembly language is a low-level language that

uses symbolic notation to represent machine language instructions. These languages are closely

connected to machine language and the internal architecture of the computer system on which

they are used.

The following instructions are a part of assembly language code to illustrate addition

of two numbers:

MOV AX,4 Stores value 4 in the AX register of CPU

MOV BX,6 Stores value 6 in the BX register of CPU

ADD AX,BX Adds the contents of AX and BX registers. Stores the result in

AX register

Advantages of second generation language

• It is easy to develop understand and modify the program developed in these languages

are compared to those developed in the first generation programming language.

• The programs written in these languages are less prone to errors and therefore can be

maintained with a great case.

Third Generation (High-Level Languages): The third generation programming languages

were designed to overcome the various limitations of the first and second generation

programming languages. The languages of the third and later generation are considered as a

high-level language because they enable the programmer to concentrate only on the logic of

the programs without considering the internal architecture of the computer system.

Advantages of third generation programming language

• It is easy to develop, learn and understand the program.

• As the program written in these languages are less prone to errors they are easy to

maintain.

• The program written in these languages can be developed in very less time as compared

to the first and second generation language.

Examples: FORTRAN, ALGOL, COBOL, C++, C.

Fourth generation language (Very High-level Languages): The languages of this generation

were considered as very high-level programming languages required a lot of time and effort

that affected the productivity of a programmer. The fourth generation programming languages

were designed and developed to reduce the time, cost and effort needed to develop different

types of software applications.

Advantages of fourth generation languages

• These programming languages allow the efficient use of data by implementing the

various database.

• They require less time, cost and effort to develop different types of software

applications.

• The program developed in these languages are highly portable as compared to the

programs developed in the languages of other generation.

Examples: SOL, CSS, coldfusion.

Fifth generation language (Artificial Intelligence Language): Fifth generation

programming languages are centred on solving problems using constraints given to the

program, rather than using an algorithm written by a programmer. Most constraint-based and

logic programming languages and some declarative languages form a part of the fifth-

generation languages.

Advantages of fifth generation languages

• These languages can be used to query the database in a fast and efficient manner.

• In this generation of language, the user can communicate with the computer system in

a simple and an easy manner.

Examples: mercury, prolog, OPS5.

1.6 Program Design Tools

Algorithms

 Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent of

underlying languages, i.e. an algorithm can be implemented in more than one programming

language.

An algorithm should have the following characteristics –

• Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or

phases), and their inputs/outputs should be clear and must lead to only one meaning.

• Input − An algorithm should have 0 or more well-defined inputs.

• Output − An algorithm should have 1 or more well-defined outputs, and should match

the desired output.

• Finiteness − Algorithms must terminate after a finite number of steps.

• Feasibility − Should be feasible with the available resources.

• Independent − An algorithm should have step-by-step directions, which should be

independent of any programming code.

Advantages of Algorithms:

1. It is a step-wise representation of a solution to a given problem, which makes it easy

to understand.

2. An algorithm uses a definite procedure.

3. It is not dependent on any programming language, so it is easy to understand for

anyone even without programming knowledge.

4. Every step in an algorithm has its own logical sequence so it is easy to debug.

5. By using algorithm, the problem is broken down into smaller pieces or steps hence, it

is easier for programmer to convert it into an actual program.

Disadvantages of Algorithms:

1. Algorithms is Time consuming.

2. Difficult to show Branching and Looping in Algorithms.

3. Big tasks are difficult to put in Algorithms.

Algorithm writing by using an example.

a) Write an algorithm to add two numbers entered by the user.

Step 1: Start

Step 2: Accept the first integer as input from the user (num1)

Step 3: Accept the second integer as input from the user (num2)

Step 4: Calculate the sum of the two integers (sum=num1+num2)

Step 5: Display sum as the result

Step 6: End

b) Write an algorithm to test the equality of two numbers.

Step 1: Start

Step 2: Input first number as A

Step 3: Input second number as B

Step 4: if A = B

 print “ Equal”

 else

 print ”Not Equal”

Step 5: End

Flowcharts

Flowchart is a diagrammatic representation of sequence of logical steps of a program.

Flowcharts use simple geometric shapes to depict processes and arrows to show relationships

and process/data flow.

Flowchart Symbols

Here is a chart for some of the common symbols used in drawing flowcharts.

Symbol Symbol Name Purpose

Start/Stop(Terminal)
Used at the beginning and end of the algorithm to

show start and end of the program.

Process Indicates processes like mathematical operations.

Input/ Output Used for denoting program inputs and outputs.

Decision
Stands for decision statements in a program, where

answer is usually Yes or No.

Arrow Shows relationships between different shapes.

On-page Connector
Connects two or more parts of a flowchart, which are

on the same page.

Off-page Connector
Connects two parts of a flowchart which are spread

over different pages.

Guidelines for Developing Flowcharts

These are some points to keep in mind while developing a flowchart −

• Flowchart can have only one start and one stop symbol

• On-page connectors are referenced using numbers

• Off-page connectors are referenced using alphabets

• General flow of processes is top to bottom or left to right

• Arrows should not cross each other

Example Flowcharts

a) Flowchart displaying "Hello world!"

b) flowchart to calculate the average of two numbers.

Pseudo code

Pseudo code is a term which is often used in programming and algorithm based fields.

It is a methodology that allows the programmer to represent the implementation of an

algorithm. Algorithms are represented with the help of pseudo codes as they can be interpreted

by programmers no matter what their programming background or knowledge is.

Algorithm is an organized logical sequence of the actions or the approach towards a

particular problem. A programmer implements an algorithm to solve a problem.

Advantages of Pseudocode

• Improves the readability of any approach. It’s one of the best approaches to start

implementation of an algorithm.

• Acts as a bridge between the program and the algorithm or flowchart. Also works as a

rough documentation, so the program of one developer can be understood easily when a

pseudo code is written out. In industries, the approach of documentation is essential. And

that is where a pseudo-code proves vital.

• The main goal of a pseudo code is to explain what exactly each line of a program should

do, hence making the code construction phase easier for the programmer.

Examples:

1. If student's grade is greater than or equal to 60

Print "passed"

 else

Print "failed"

2. Set total to zero

 Set grade counter to one

 While grade counter is less than or equal to ten

Input the next grade

https://www.geeksforgeeks.org/fundamentals-of-algorithms/

Add the grade into the total

 Set the class average to the total divided by ten

 Print the class average.

Types of Errors

Errors are the problems or the faults that occur in the program, which makes the

behavior of the program abnormal, and experienced developers can also make these faults.

Programming errors are also known as the bugs or faults, and the process of removing these

bugs is known as debugging.

• Syntax error

• Run-time error

• Linker error

• Logical error

• Semantic error

Syntax error

Syntax errors are also known as the compilation errors as they occurred at the

compilation time, or we can say that the syntax errors are thrown by the compilers. These

errors are mainly occurred due to the mistakes while typing or do not follow the syntax of the

specified programming language.

For example:

If we want to declare the variable of type integer,

int a; // this is the correct form

Int a; // this is an incorrect form.

Commonly occurred syntax errors are:

• If we miss the parenthesis (}) while writing the code.

• Displaying the value of a variable without its declaration.

• If we miss the semicolon (;) at the end of the statement.

Run-time error

Sometimes the errors exist during the execution-time even after the successful

compilation known as run-time errors. When the program is running, and it is not able to

perform the operation is the main cause of the run-time error. The division by zero is the

common example of the run-time error. These errors are very difficult to find, as the compiler

does not point to these errors.

Error:

warning: division by zero [-Wdiv-by-zero]

 div = n/0;

Linker Errors

These error occurs when after compilation we link the different object files with main’s

object using Ctrl+F9 key(RUN). These are errors generated when the executable of the

program cannot be generated. This may be due to wrong function prototyping, incorrect header

files. One of the most common linker error is writing Main() instead of main().

Error:

 (.text+0x20): undefined reference to `main'

Logical Errors

 On compilation and execution of a program, desired output is not obtained when

certain input values are given. These types of errors which provide incorrect output but appears

to be error free are called logical errors. These errors solely depend on the logical thinking of

the programmer and are easy to detect if we follow the line of execution and determine why

the program takes that path of execution.

Error:

 No Output

Semantic Errors

 This error occurs when the statements written in the program are not meaningful to

the compiler.

Error

 error: lvalue required as left operand of assignment

 a + b = c; //semantic error

Testing & Debugging Approaches

Testing

 Testing is the process of verifying and validating that a software or application is bug

free, meets the technical requirements as guided by its design and development and meets the

user requirements effectively and efficiently with handling all the exceptional and boundary

cases.

Debugging

 Debugging is the process of fixing a bug in the software. It can defined as the

identifying, analyzing and removing errors. This activity begins after the software fails to

execute properly and concludes by solving the problem and successfully testing the software.

It is an extremely complex and tedious task because errors need to be resolved at all stages of

debugging.

TESTING DEBUGGING

Testing is the process to find bugs and

errors.

Debugging is the process to correct the bugs

found during testing.

It is the process to identify the failure of

implemented code.

It is the process to give the absolution to code

failure.

Testing is the display of errors. Debugging is a deductive process.

Testing is done by the tester.
Debugging is done by either programmer or

developer.

There is no need of design knowledge in

the testing process.

Debugging can’t be done without proper

design knowledge.

Testing can be done by insider as well as

outsider.

Debugging is done only by insider. Outsider

can’t do debugging.

https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-engineering-debugging/

Testing can be manual or automated.
Debugging is always manual. Debugging can’t

be automated.

It is based on different testing levels i.e.

unit testing, integration testing, system

testing etc.

Debugging is based on different types of bugs.

Testing is a stage of software

development life cycle (SDLC).

Debugging is not an aspect of software

development life cycle, it occurs as a

consequence of testing.

Testing is composed of validation and

verification of software.

While debugging process seeks to match

symptom with cause, by that it leads to the

error correction.

Testing is initiated after the code is

written.

Debugging commences with the execution of a

test case.

INTRODUCTION TO C

Introduction

➢ C is mother language of all programming language.

➢ It is a popular computer programming language.

➢ It is procedure-oriented programming language.

➢ It is also called middle level programming language.

History of C Language

“C” is a programming language developed at AT & T Bell Laboratories of USA in

1972. It was developed Dennis Ritche in late 1970‟s. it began to replace the more familiar

languages of that time like PL/1, ALGOL etc.

1. “C” became popular because of its reliability, simple and easy to use

2. It was friendly capable and reliable

3. ALGOL 60 was developed and did not become popular because it was too general

and too abstract.

4. They developed “CPU” (Combined Programming Language)

5. Next as it could not come up to make ALGOL 60 better one they moved to “BCPL”

(Basic Combines Programming Language. Developed by martin Richard Cambridge

university)

6. At the same time a language called “B” written by ken Thompson at AT & T‟S. Bell

laboaratories as a further simplification of BCPL.

7. “C” s compactness and coherence is mainly due to it‟s one man language. Ex- LISP,

AASCA.

Language Year Developed By

AlGOL 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features of “C” Language:

1. It is robust language because of rich set of binary in function

2. It is efficient and fast because of its variant datatypes and powerful operation.

3. It is highly Portable i.e., programs written in one computer can be run on another

4. It is well suited for structure program, thus allows the user to think about the problem

in the terms of functional blocks.

5. Debugging, testing and maintenance is easy

6. ability to extend itself, we can continuously add our own functions to the program.

Structure of a C Program

 A C program is a set of functions, data type definitions and variable declarations

contained in a set of files. A C program always start its execution by the function with

name main. Any function can invoke any other function and the variables declared outside the

function are either global or local to the current file (if they are declared with the static prefix).

The following figure shows the structure of a C program contained in several files.

Documentation Section: The documentation section is the part of the program where the

programmer gives the details associated with the program. documentation section Consists of

comments, some description of the program, programmer name and any other useful points

that can be referenced later.

Example

/* Write a C Program to print HelloWorld */

Link Section: This part of the code is used to declare all the header files that will be used in

the program. This leads to the compiler being told to link the header files to the system libraries.

Example

#include<stdio.h>

Definition Section: In this section, we define different constants. The keyword define is used

in this part.

Example

#define PI=3.14

Global Declaration Section: This part of the code is the part where the global variables are

declared. All the global variable used are declared in this part. The user-defined functions are

also declared in this part of the code.

Example

float area(float r);

int a=7;

Main Function Section: Every C-programs needs to have the main function. Each main

function contains 2 parts. A declaration part and an Execution part. The declaration part is the

part where all the variables are declared. The execution part begins with the curly brackets and

ends with the curly close bracket.

Example

int main(void)

{

int a=10;

printf(" %d", a);

return 0;

}

Sub Program Section: All the user-defined functions are defined in this section of the

program.

Example

int add(int a, int b)

{

return a+b;

}

Writing the First C Program

#include <stdio.h>

#include <conio.h>

void main()

{

printf(“Hello World!”);

getch();

}

Describe the C Program :-

➢ #include <conio.h> includes the console input output library functions. The getch()

function is defined in conio.h file.

➢ #include <stdio.h> includes the standard input output library functions. The printf()

function is defined in stdio.h .

➢ void main() The main() function is the entry point of every program in c language. The

void keyword specifies that it returns no value.

➢ printf() The printf() function is used to print data on the console.

➢ getch() The getch() function asks for a single character. Until you press any key, it

blocks the screen.

Output of Program is:-

 Hello World!

Header Files used in C Program

Header files offer these features by importing them into your program with the help of

a preprocessor directive called #include. These preprocessor directives are responsible for

instructing the C compiler that these files need to be processed before compilation.

Every C program should necessarily contain the header file <stdio.h> which stands for

standard input and output used to take input with the help of scanf() function and display the

output using printf() function.

Basically, header files are of 2 types:

1. Standard library header files: These are the pre-existing header files already available in

the C compiler.

2. User-defined header files: Header files starting #define can be designed by the user.

Syntax of Header File

#include<filename.h>

Here is the table that displays some of the header files in C language

Sr.No. Header Files & Description

1
stdio.h

Input/Output functions

2
conio.h

Console Input/Output functions

3
stdlib.h

General utility functions

4
math.h

Mathematics functions

Compiling and Executing C Programs

C program file is compiled and executed the compiler generates some files with the same name

as that of the C program file but with different extensions.

Below image shows the compilation process with the files created at each step of the

compilation process:

Process of compiling and running a C program

Every file that contains a C program must be saved with ‘.c’ extension. This is

necessary for the compiler to understand that this is a C program file. Suppose a program file

is named, first.c. The file first.c is called the source file which keeps the code of the program.

Now, when we compile the file, the C compiler looks for errors. If the C compiler reports no

error, then it stores the file as a .obj file of the same name, called the object file. So, here it

will create the first.obj. This .obj file is not executable. The process is continued by the

Linker which finally gives a .exe file which is executable.

Important Points

• C program file (Source file) must save with .c extension.

• The compiler converts complete program at a time from high-level language to low-

level language.

• Input to the compiler is .c file and output from the compiler is .exe file, but it also

generates .obj file in this process.

• The compiler converts the file only if there are no errors in the source code.

• CPU places the result in User Screen window.

TOKENS IN C

 A token is the smallest element of a program that is meaningful to the compiler (or) In

a “C” program the smallest individual units are known as “C” tokens. Tokens can be classified

as follows:

1. Keywords

2. Identifiers

3. Constants

4. Strings

5. Special Symbols

6. Operators

1. Keywords: Keywords are reserved words by compiler. Keywords are assigned with fixed

meaning and they cannot be used as variable name. No header file is needed to include the

keywords.

C language supports 32 keywords which are given below:

 auto double int struct

 break else long switch

 case enum register typedef

 char extern return union

 const float short unsigned

 continue for signed void

 default goto sizeof volatile

 do if static while

2. Identifiers:

• Identifier refers to the name of variables, functions and arrays. These are user defined

names and consists of a sequence of letters and digits.

• Both uppercase and lowercase letters can be used, and C language is case sensitive. A

special symbol underscore (_) is also permitted.

• Rules for identifiers

o First character must be an alphabet or underscore.

o Must consist of only letters, digits or underscore.

o Should not be a keyword and should not have any blank space.

o C is a case – sensitive language i.e, AREA and area both are different identifiers.

• Example: -int num;

 Char name;

 Where num and name are identifier names.

3. Constants: constants in “C” are applicable to the values which not change during the

execution of a program.

Integer Constants: Sequence of number 0-9 without decimal points, fractional part or any

other symbols. It requires two or four bytes, can be +ve, -ve or Zero the number without a sign

is as positive.

 Eg: -10, +20, 40

Real Constants: Real constants are often known as floating constants.

 Eg: 2.5, 5.521, 3.14 etc.

Character Constants: Single character constant: A single character constants are given

within a pair of single quote mark.

 Eg : ‘a’, ‘8, etc.

String Constant: These are the sequence of character within double quote marks

 Eg : “Straight” “India”, “4”

4. Strings: String in C are always represented as an array of characters having null character

'\0' at the end of the string. This null character denotes the end of the string. Strings in C are

enclosed within double quotes, while characters are enclosed within single characters. The size

of a string is a number of characters that the string contains.

Now, we describe the strings in different ways:

 char a[10] = "pragati"; // The compiler allocates the 10 bytes to the 'a' array.

 char a[] = "pragati"; // The compiler allocates the memory at the run time.

 char a[10] = {'p','r','a','g','t','i''\0'}; // String is represented in the form of characters.

5. Special Symbols: The following special symbols are used in C having some special meaning

and thus, cannot be used for some other purpose.[] () {}, ; * = #

• Brackets []: Opening and closing brackets are used as array element reference. These

indicate single and multidimensional subscripts.

• Parentheses (): These special symbols are used to indicate function calls and function

parameters.

• Braces {}: These opening and ending curly braces marks the start and end of a block

of code containing more than one executable statement.

• comma (,): It is used to separate more than one statements like for separating

parameters in function calls.

• Semi colon : It is an operator that essentially invokes something called an

initialization list.

• asterisk (*): It is used to create pointer variable.

• assignment operator: It is used to assign values.

• pre processor(#): The preprocessor is a macro processor that is used automatically by

the compiler to transform your program before actual compilation.

6. Operators: Operators are symbols that triggers an action when applied to C variables and

other objects. The data items on which operators act upon are called operands.

Depending on the number of operands that an operator can act upon, operators can be classified

as follows:

• Unary Operators: Those operators that require only single operand to act upon are

known as unary operators.

For Example increment and decrement operators

• Binary Operators: Those operators that require two operands to act upon are called

binary operators.

Binary operators are classified into :

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Conditional Operators

6. Bitwise Operators

• Ternary Operators: These operators requires three operands to act upon. For Example

Conditional operator(?:).

Basic Data Types

 C language is rich in data types

Syntax

 datatypename variablename=value;

ANSI – American National Standard Institute

ANSI C Supports Four classes of data types.

 1. Primary data type(Fundamental)

 2. Derived data types

 3. User defined data types

Fundamental data types

 1. Character (char)

 2. Integer (int)

 3. floating point (float)

 4. double-precession (double)

 5. void

Range of data types:

Data type Bytes in Ram Range of data type

char 1 bytes -128 to 127

int 2 bytes -32, 768 to 32,767

float 4 bytes 3.4c-38 to 3.4 c+ 38

double 8 bytes 1.7C – 308 to 1.7c +308

1. Character: The most basic data type in C. It stores a single character and requires a single

byte of memory in almost all compilers.

Ex: char ch=’h’;

2. Integer: Integers are whole numbers with a range of variables supported by a particular

machine.

Ex: int a=10,b=20,sum;

• C has three classes of integer storage

 short int

 int

 long int

• It has a set of qualifiers i.e.,

 sign qualifier

 unsigned qualifier

• short int uses half the range of storage amount of data

• signed integer uses one bit for sign and 15 bits for magnitude

• unsigned int use all the bits for the magnitude of the number and are positive.

3. Floating: It is used to store decimal numbers (numbers with floating point value) with single

precision.

Ex: float a=2.5,b=10.5,div;

4. Double: It is used to store decimal numbers (numbers with floating point value) with double

precision.

Ex: double a=1250.0023,b=2558.043;

5.Void: A void type has no value this is usually used to specify the return type of function ,

this function does not return any value to calling function

Details list of data type:

DATA TYPE
MEMORY

(BYTES)
RANGE

FORMAT

SPECIFIER

short int 2 -32,768 to 32,767 %hd

unsigned short int 2 0 to 65,535 %hu

unsigned int 4 0 to 4,294,967,295 %u

int 4 -2,147,483,648 to 2,147,483,647 %d

long int 8 -2,147,483,648 to 2,147,483,647 %ld

unsigned long int 8 0 to 4,294,967,295 %lu

long long int 8 -(2^63) to (2^63)-1 %lld

unsigned long long int 8 0 to 18,446,744,073,709,551,615 %llu

Char 1 -128 to 127 or 0 to 255 %c

signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

float 4 1.2E-38 to 3.4E+38 %f

double 8 2.3E-308 to 1.7E+308 %lf

long double 16 3.4E-4932 to 1.1E+4932 %Lf

Variables

 This is a data name used for storing a data, its value may be changed during the

execution. The variables value keep‟s changing during the execution of the program

 Eg : height, average, sum, etc.

Declaration of Variable: It tells the complier what the variable name is used, what type of

date is held by the variable.

Syn:

 datetype v1,v2,….vn;

Eg :

 int a, b; float sum; double ratio;

 Representation of Constant

Eg:

 const int r = 10;

 Assigning values to variables

Eg :

 int x,y; x= 10; y=5;

Programs: Program for variable declaration

main()

{

 float x,p;

 x=10.1;

 p=5.2;

 printf (“x = %f”, x);

 printf (“p = %f”, p);

}

Output:

 x= 10.10000

 p = 5.2

Comments

• Comments in C language are used to provide information about lines of code. It is

widely used for documenting code.

• There are 2 types of comments in the C language.

1. Single Line Comments

2. Multi-Line Comments

1. Single Line Comments

• Single line comments are represented by double slash \\.

• Example:

 #include<stdio.h>

 int main()

 {

 //printing information

 printf("Hello C");

 return 0;

 }

2. Mult Line Comments

• Multi-Line comments are represented by slash asterisk * ... *\. It can occupy many

lines of code.

• Example:

 #include<stdio.h>

 int main()

 {

 /*printing information

 Multi-Line Comment*/

 printf("Hello C");

 return 0;

 }

Input / Output Statements In C

 C has many input output functions in order to read data from input devices and display

the results on the screen.

Classification of Input / Output statements in C

1. Formatted Functions

• Input (scanf())

• Output (printf())

2. Unformatted Functions

• Input (getch(), getche(), gethar(), gets())

• Output (putch(), puts())

Formatted Functions

 These functions read and write all types of data values. They require a conversion

symbol to indents the data type using these functions the O/P can be presented in an aligned

manner.

Data Types with conversion symbol (format string)

 Data Type Conversion symbol

Integer Short integer %d or % i

 Short unsigned % u

 long signed % ld

 Long unsigned % lu

 Unsigned hexadecimal % x

 Unsigned octal % 0

Real float % f or % g

 double % lf

 signed character %c

 unsigned char %c

 string %s

Escape Sequences with their ASC|| values

Escape Sequence Use ASC|| Value

 \n New line 10

 \b Backspace 8

 \f Form feed 12

 \’ Single Quote 39

 \\ Back slash 92

 \o Null 0

 \ t Horizontal tab 9

 \ r Carriage return 13

 \ a Alert 7

 |? Question marks 63

 \“ Double Quote 34

scanf () function is used to read values using key board. It is used for runtime assignment of

variables.

The general form of scanf() is

 scanf(“format String “ , list_of_addresses_of_Variables);

The format string contains - Conversion specifications that begin with % sign

Eg:

 scanf(“ %d %f %c”, &a &b, &c);

 &‟ is called the “address” operator. In scanf() the „&‟ operator indicates the memory

location of the variable. So that the Value read would be placed at that location.

printf() function is used to Print / display values of variables using monitor.

The general form of printf() is

Syntax:

 printf(“control String “ , list_of_ Variables);

 - Characters that are simply printed as they are

 - Conversion specifications that begin with a % sign

 - Escape sequences that begin with a „\‟ sign.

Eg:

 main ()

 {

 int avg = 346;

 float per = 69.2;

 printf(“ Average = %d \n percentage = %f”, avg, per);

 }

Output:

 Average = 346

 Percentage = 69.200000

 printf() examines the format string from left to right and prints all the characters until

it encounter a „%‟ or „\‟ on the screen. When it finds % (Conversion Specifier) it picks up the

first value. when it finds „\‟ (escape sequence) it takes appropriate action (\n-new line). This

process continues till the end of format string is reached.

Example: Program ()

 main ()

 {

 Float avg,per;

 printf(“Enter values for avg & per”);

 scanf(“ %d %f”, & avg, & per);

 printf(“ Average = %d \n Percentage = %f”, avg. per);

 }

O/P:

 Enter values for avg & per 346 69.2

 Average = 346

 Percentage = 69.200000

Unformatted Functions

getchar () function is used to read one character at a time from the key board

Syntax

 ch = getchar (); where ch is a char Var.

Eg:

 main ()

 {

 char ch;

 printf(“Enter a char”);

 ch = getchar ();

 printf(“ch =%c”, ch);

}

O/P

 Enter a char M

 M

 ch = M

 When this function is executed, the computer will wait for a key to be pressed and

assigns the value to the variable when the “enter” key pressed.

putchar (): function is used to display one character at a time on the monitor.

Syntax:

 putchar (ch);

Eg:

 char ch = „M‟

 putchar (ch);

 The Computer display the value char of variable „ch‟ i.e M on the Screen.

getch (): function is used to read a char from a key board and does not expect the “enter” key

press.

Syntax:

 ch = getch ();

 When this function is executed ,computer waits for a key to be pressed from the dey

board.

getche (): function is used to read a char from the key board without expecting the enter key

to be pressed. The char read will be displayed on the monitor.

Syntax:

 ch = getche ();

Note that getche () is similar to getch () except that getche () displays the key pressed from

the dey board on the monitor. In getch () „e‟ stands for echo.

String I/O functions

gets () function is used to read a string of characters including white spaces. Note that wite

spaces in a strng cannot be read using scanf() with %s format specifier.

Syntax:

 gets (S); where „S‟ is a char string variable

Ex:

 char S[20];

 gets (S);

When this function is executed the computer waits for the string to be entered.

Header Files used in C Program

Header files offer these features by importing them into your program with the help of

a preprocessor directive called #include. These preprocessor directives are responsible for

instructing the C compiler that these files need to be processed before compilation.

Every C program should necessarily contain the header file <stdio.h> which stands for

standard input and output used to take input with the help of scanf() function and display the

output using printf() function.

Basically, header files are of 2 types:

3. Standard library header files: These are the pre-existing header files already available in

the C compiler.

4. User-defined header files: Header files starting #define can be designed by the user.

Syntax of Header File

#include<filename.h>

Here is the table that displays some of the header files in C language

Sr.No. Header Files & Description

1
stdio.h

Input/Output functions

2
conio.h

Console Input/Output functions

3
stdlib.h

General utility functions

4
math.h

Mathematics functions

Operators In C

Operator: An operator is a symbol that tells the Computer to perform certain mathematical or

logical manipulations.

Expression: An expression is a sequence of operands and operators that reduces to single value

Eg: 10+25 is an expression whose value is 35

C Operators can be classified into a no. of categories.

 1. Arithmetic

 2. Relational

 3. Logical

 4. Assignment

 5. Increment and Decrement

 6. Conditional

 7. Bitwise

 8. Special

Arithmetic Operators: C provides all the basic arithmetic operators, they are +, -, *, /, %

Integer division truncates any fractional part. The modulo division produces the remainder of

an integer division.

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* multiplication

Operator Meaning of Operator

/ division

% remainder after division (modulo division)

Integer Arithmetic: When the operands in an expression are integers then the expression is

an integer expression and the operation is called integer arithmetic. This always yields an

integer value.

Eg. a = 14 and n = 4 then

 a - b = 10 Note : During modulo division,the

 a + b = 18 sign of the result is always the sign

 a * b = 56 of the first operand (the dividend)

 a / b = 3 - 14 % 3 = -2

 a % b = 2 -14 % - 3 = 2

 14 % -3 = 2

Write a program to illustrate the use of all Arithmetic operator

 main ()

 {

 int sum, prod , sub, div, mod, a, b ;

 printf(“Enter values of a, b :”) ;

 scanf(“ /.d %d”, & a, & b) ;

 sum = a+b ;

 printf(“sum = %d”, sum);

 sub = a-b; printf(“sub = %d”, sub);

 prod = a * b ;

 printf(“prod = %d”, a* b);

 div = a/b;

 printf(“ Div = %d”, div);

 mod = a % b ;

 printf(“ mod = %d”,a % b);

 }

Real Arithmetic / Floating Pont Arithmetic: Floating Point Arithmetic involves only real

operands of decimal or exponential notation. If x, y & z are floats, then

 x = 6.0/7.0 = 0.857143

 y = -1.0/3.0 = 0.333333

 z = 3.0/2.0 = 1.500000

% cannot be used with real operands

Mixed mode Arithmetic: When one of the operands is real and the other is integer the

expression is a mixed mode arithmetic expression.

Eg:

 15/10.0 = 1.500000

 15/10 = 1

 10/15 = 0

 -10.0/15 = -0.666667

Relational Operator: These are the operators used to Compare arithmetic, logical and

character expressions. The value of a relational express is either one or zero .it is 1 if one is the

specified relation is true and zero if it is false.

The relational operators in C are

 Operator Meaning

 < is less than

 < = is less than or equal to

 > is greater than or equal to

 > = is greater than or equal to

 = = is equal to

 ! = is not equal to

Example:

 #include <stdio.h>

 int main()

 {

 int a = 5, b = 5;

 printf("%d == %d is %d \n", a, b, a == b);

 printf("%d > %d is %d \n", a, b, a > b);

 printf("%d < %d is %d \n", a, b, a < b);

 printf("%d != %d is %d \n", a, b, a != b);

 printf("%d >= %d is %d \n", a, b, a >= b);

 printf("%d <= %d is %d \n", a, b, a <= b);

 return 0;

 }

Output

 5 == 5 is 1

 5 > 5 is 0

 5 < 5 is 0

 5 != 5 is 0

 5 >= 5 is 1

 5 <= 5 is 1

Logical operator: Logical Operators are used when we want to test more than one condition

and make decisions. here the operands can be constants, variables and expressions Logical

operators are &&, ||, !

 && Logical AND. True only if all operands are true

 || Logical OR. True only if either one operand is true

 ! Logical NOT. True only if the operand is 0

Example:

#include <stdio.h>

int main()

{

 int a = 5, b = 5, c = 10, result;

 result = (a == b) && (c > b);

 printf("(a == b) && (c > b) is %d \n", result);

 result = (a == b) && (c < b);

 printf("(a == b) && (c < b) is %d \n", result);

 result = (a == b) || (c < b);

 printf("(a == b) || (c < b) is %d \n", result);

 result = (a != b) || (c < b);

 printf("(a != b) || (c < b) is %d \n", result);

 result = !(a != b);

 printf("!(a == b) is %d \n", result);

 result = !(a == b);

 printf("!(a == b) is %d \n", result);

 return 0;

}

Output

(a == b) && (c > b) is 1

(a == b) && (c < b) is 0

(a == b) || (c < b) is 1

(a != b) || (c < b) is 0

!(a != b) is 1

!(a == b) is 0

Assignment Operator: Used to assign the result of an expression to a variable. “=” is the

assignment operator. In addition C has a set of „short hand‟ assignment operators of the form

Example:

// Working of assignment operators

#include <stdio.h>

int main()

{

 int a = 5, c;

 c = a; // c is 5

 printf("c = %d\n", c);

 c += a; // c is 10

 printf("c = %d\n", c);

 c -= a; // c is 5

 printf("c = %d\n", c);

 c *= a; // c is 25

 printf("c = %d\n", c);

 c /= a; // c is 5

 printf("c = %d\n", c);

 c %= a; // c = 0

 printf("c = %d\n", c);

 return 0;

}

Output

 c = 5

 c = 10

 c = 5

 c = 25

 c = 5

 c = 0

 Shorthand operator Assignment operator

 a + = 1 a = a+1

 a - = 1 a=a-1

 a * = n+1 a = a* (n + 1)

 a / = n+1 a = a/(n+1)

 a % = b a = a % b

Increment and Decrement Operators: C programming has two operators increment ++ and

decrement -- to change the value of an operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These

two operators are unary operators, meaning they only operate on a single operand.

 ++ and - -

Example:

 ++x or x ++ == > x+=1 == > x=x+1

 -- x or x- - == > x-=1 == > x=x-1

#include <stdio.h>

int main()

{

 int a = 10, b = 100;

 float c = 10.5, d = 100.5;

 printf("++a = %d \n", ++a);

 printf("--b = %d \n", --b);

 printf("++c = %f \n", ++c);

 printf("--d = %f \n", --d);

 return 0;

}

Output

 ++a = 11

 --b = 99

 ++c = 11.500000

 ++d = 99.500000

Conditional operator: is used to check a condition and Select a Value depending on the Value

of the condition.

 Variable = (condition)? Value 1 : Value 2:

 If the Value of the condition is true then Value 1 is e valued assigned to the varable,

otherwise Value2.

Example: big = (a>b)? a:b;

 This exxp is equal to

 if (a>b)

 big = a;

 else

 big = b;

Bitwise operator: are used to perform operations at binary level i. e. bitwise. these operators

are used for testing the bits, or Shifting them right or left . These operators are not applicable

to float or double. Following are the Bitwise operators with their meanings.

 Operators Meaning of operators

 & Bitwise AND

 | Bitwise OR

 ^ Bitwise exclusive OR

 ~ Bitwise complement

 << Shift left

 >> Shift right

Example: consider a = 13 & b = 6 as 8 bit short int (1byte)

<< Left Shift

 a = 13 Binary 00001101

 b = 6 00000110

 Consider a << 2 which Shifts two bits to left , that is 2 zeros are inserted at the right

and two bits at the left are moved out.

 00001101

 Moved

 00110100

Finally the result is 00110100 . Deci 52 (13x4)

sizeof operator: is used to find the on. of bytes occupied by a variable / data type in computer

memory.

#include <stdio.h>

int main()

{

 int a;

 float b;

 double c;

 char d;

 printf("Size of int=%lu bytes\n",sizeof(a));

 printf("Size of float=%lu bytes\n",sizeof(b));

 printf("Size of double=%lu bytes\n",sizeof(c));

 printf("Size of char=%lu byte\n",sizeof(d));

 return 0;

}

Output

Size of int = 4 bytes

Size of float = 4 bytes

Size of double = 8 bytes

Size of char = 1 byte

comma operator: can be used to link the related expressions together. A comma- linked: list

of expressions are evaluated left to right and the value of right-most exp is the value of

combined expression.

Example: value = (x = 10, y = 5, x = y)

Precedence and Associativity Rules

Precedence: precedence is nothing but priority that indicates which operator has to be

evaluated first when there are more than one operator.

Example:

 int x = 5 - 17* 6;

Associativity: when there are more than one operator with same precedence [priority] then

we consider associativity , which indicated the order in which the expression has to be

evaluated. It may be either from Left to Right or Right to Left.

Example:

 5 * 4 + 10 / 2

 = 20 + 5

 =25

Operators Precedence & Associativity Table

Operator Meaning of operator Associativity

() Functional call

Left to right
[] Array element reference

-> Indirect member selection

. Direct member selection

! Logical negation Right to left

~ Bitwise(1 's) complement

+ Unary plus

- Unary minus

++ Increment

-- Decrement

& Dereference (Address)

* Pointer reference

sizeof Returns the size of an object

(type) Typecast (conversion)

* Multiply

Left to right / Divide

% Remainder

+ Binary plus(Addition)
Left to right

- Binary minus(subtraction)

<< Left shift
Left to right

>> Right shift

< Less than

Left to right
<= Less than or equal

> Greater than

>= Greater than or equal

== Equal to
Left to right

!= Not equal to

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

?: Conditional Operator Right to left

= Simple assignment

Right to left

*= Assign product

/= Assign quotient

%= Assign remainder

+= Assign sum

-= Assign difference

&= Assign bitwise AND

^= Assign bitwise XOR

|= Assign bitwise OR

<<= Assign left shift

>>= Assign right shift

, Separator of expressions Left to right

Type Casting Types

 Normally before an operation takes pace both the operands must have the same type. C

converts One or both the operands to the appropriate date types by “Type conversion”. This

can be achieved in 3 ways.

Implicit Type conversion: In this the data type /Variable of lower type (which holds lower

range of values or has lower precision) is converted to a higher type (which holds higher range

of values or has high precision). This type of conversion is also called “promotion”.

If a „char‟ is converted into „int‟ it is called as Internal promotion.

Example:

 int I;

 char C;

 C = „A‟;

 I = C;

Now the int Variable I holds the ASCII code of the char „A‟

a) An arithmetic operation between an integer and integer yields an integer result.

b) Operation b/w a real yields a real

c) Operation b/w a real & an integer always yields a real result

Example:

 5/2 = 2 2/5 = 0

 5.0/2 = 2.5 2.0/50. = 0.4

 5/2.0 = 2.5 2/5.0 = 0.4

 5.0/2.0 = 2.5 2.0/5.0 = 0.4

Assignment Type Conversion: If the two Operands in an Assignment operation are of

different data types the right side Operand is automatically converted to the data type of the

left side.

Example:

 Let „k‟ is an int var & „a‟ is a float var

 int k; yes float a; yes

 k= 5/2 2 k=2/5 0 a = 5/2 2.0

 k=5.0/2 2 k=2.0/5 0 a = 5.0/2 2.5

 k=55.0/2 2 k=2/5.0 0 a = 5/2.0 2.5

 k=5.0/2.0 2 k=2.0/5.0 0 a = 2/5 0.0

 a = 2.0/5 0.4

 a = 2.0/0.5 0.4

Explicit Type Conversion: When we want to convent a type forcibly in a way that is different

from automatic type conversion, we need to go for explicit type conversion.

Syntax

 (type name) expression;

Type name is one of the standard data type. Expression may be a constant variable or an

expression this process of conversion is called as casting a value.

Example:

 x = (int) 7.5

 A = (int) 21.3/(int) 4.5

 Y =(int) (a + b)

 P = (double)sum/n

	Programming for problem solving using C Notes
	Unit - I

